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Abstract

This report examines the radio propagation model for narrow and long tunnels.
Modal analysis is used to model the path gain in 2-D and 3-D rectangular tunnels and the

coupling loss of L, T and cross tunnels. Modal attenuation is determined by the
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w

width of tunnel, by the mode number and dielectric constant of the walls. In oversized
tunnels, many modes inay propagate, however higher modes have high attenuation
constant so that a few lower modes are dominant at long distances from the transmitter.
The antenna polarization, giving the least path loss in 3-D tunnels, is found by comparing
attenuation constants of both vertical and horizontal polarization. For the propagation into
branches off the main tunnel, mode coupling at the discontinuities is obtained by hybrid
ray-mode conversion. By accounting for the mode diffraction at each corner, we compute
the coupling loss into cross junctions, the T-junction and L-bends. Because the cross
tunnel has four edges and they generate more corner diffracted modal fields than other
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1. Introduction

Radio communication in mine, rail and road tunnels has been of interest since 1920s.
Early studies considered the use of leaky cables, which are widely used to provide
relatively uniform coverage over a tunnel [1]. However the use of leaky cables requires
prior access to the tunnel in order to install the cable and related infrastructure. Free
propagation between radio transceivers has also been studied. In this case the tunnel acts
as lossy waveguide. Both modal [2] and ray [3,4,5] approaches have been used to model

propagation in tunnels, as discussed below.

For small tunnels and at lower frequencies, the tunnel dimensions are only a few
times the wavelength of the radio signal. In this case the modal approach is simpler and
more accurate. For long distance along a straight tunnel, the modal approach is
appropriate even when the tunnel dimensions are much larger than the wavelength. The
purpose of this study is to evaluate the coupling of such modes at junctions and bends in

tunnels.

For the modal analysis approach to propagation, the tunnel is treated as a hollow
wavegude with lossy dielectric walls. Mahmound and Wait [6] studied the radiation of
dipoles in rectangular tunnel assuming the side walls to be perfectly conducting. Emslie
et. al. [2] found approximate mc:2 solutions for the propagation constant and the field
distribution in straight tunnels with dielectric walls. Numerical evaluation of the
couplings at L-bends and T-junctions were carried out by Sakai and Koshiba [7] using the
boundary-element method. Their approach gives the electromagnetic field distribution for
two-dimensional tunnels (analogue to to parallel plate waveguide). However, this
numerical approach does not yield analytic expressions for the mode coupling that
explicitly contain the dependence on geometry, frequency and polarization. Mariage et al.
[8] investigated field variation inside or near a tunnel entrance using the uniform theory
of diffraction (UTD) tc explain the coupling between free space and the tunnel. The UTD
approach does result in analytic expressions. In what follows, we make use of the UTD

approach to describe coupling between modes at tunnel junctions and sharp bends.



In a tunnel whose size is very large relative to the wavelength, another approach to
propagation modeling is based on ray tracing. Using a 3-D ray launching approach,
Cichon et. al. [3,4] studied the radio channel characteristics of various tunnels. Chen and
Jeng [5] proposed studying propagation in tunnels with traffic by the shooting and
bouncing ray method. Ray tracing is a very powerful method to model the wireless
channel at high frequencies when the entire geometry of the tunnel is taken into account.
However, for long relatively narrow tunnels many multiply reflected rays must be taken
into account. Moreover, the ray tracing approach does not separate the effects of
individual junctions or bends. In order to explain the propagation characteristics of long
and narrow tunnel and low operating frequencics, we make use of modal analysis. We
derived the modal fields and their excitation by source starting with a rigorous integral
formulate for a straight tunnel. Coupling at junctions and bends is then treated using
hybrid ray-mode theory to find the equivalent sources to represent the mode coupling that
results from diffraction at the appropriate corners. This approach is similar to study
reflection at the open end of a perfectly conducting waveguide [9], but must account for

the angle dependence of the reflection coefficient.

We start by considering the simplified case of a 2-D tunnel (analogues to parallel
plate waveguide) and then show how the resulting expressions are generalized to the casc

of actual 3-D tunnel.




2. Modal Analysis of the Radio Propagation in 2-D Straight Tunnels

2.1 Analysis of TE Propagation in 2-D Tunnels
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Figure 2-1. Propagation in 2-D Straight Tunnel

Consider propagation in simple 2-D tunnel shown in Figure 2-1. The side walls

have the dielectric constant & and finite conductivity o . Suppose a line source of

current source is located at x = x and z =0 so that the current density is
J=a,J,6(x-x)5(z)
The field due to the line source excitation can be found

VXE =—-jouH

(2-1)



VxH = jweE +J (2-3)

Substituting expression (2-1) for the current gives

VxH = jweE +a,J,8(x - x)5(z) (2-4)
By taking the curl of both side of (2-2) and using (2-4), we obtain

Vx(VXE)=-jou(VxH)= - joul joeE +a J,5(x - ¥)5(:)) (2-5)

The curl operations can be expanded as

Vx(VXE)=V(V-E)-V’E=-V°E (2-6)

Since V- E =0, from (2-5) and (2-6) we obtain the wave equation.

~VPE+KE =~ joul (6 (x - x')5(c)a, (2-7)
where k& = w./ e is the wavenumber which is different in the media.

The solution of the equation (2-7) can be found using the Fourier representation
of the modal field in tunnel. Since E is seen from (2-7) to have only a y-component, the

Fourier representation takes the form.

1953

E, (.\',z):;% E(x,x)e™dx (2-8)

where x is the wavenumber along z. Conversely, E(A‘,K) is found from the Fourier

transform.




E(x,x)= 'E E (x,2)e’"dz (2-9)

Taking the Fourier transform of both side of the equation (2-7),
J: [— VE, +k’E, lej“:dz = Ji [~ jous ,6(x - x)8(2)k ™ dz = - joud 5(x - x')  (2-10)

Substituting equation (2-8) for E, (x, z) into (2-10), after some manipulation we obtain

4

(~ ’3 +x° }E(x,l() =—jout ,5(x - x’) (2-11)

ox

To satisfy (2-11), E(x,x) must be continuous at x=x", but its derivative is

discontinuous above the plane x=x" and below the plane in the absence of the walls.

The derivative must satisfy the jump condition.

’
Azt

%E(x,l() =, (2-12)

X =

The electric fields are given by

E* (x,l() =E, (K)e_jﬁ("’""'/) for x >x’ (2-13)
and
E™(x,x)= E (k) ) for x <x’ (2-14)

where =+k* —k* is the wavenumber along x.




E(K):%Jo (2-15)

The fields (2-13) and (2-14) may be viewed as plane waves radiated by the line
source. These waves are multiply reflected by the tunnel walls. The total field E can
therefore be found by summing all of the multiply reflected plane waves.

From Figure 2-1 the transform E(x,x) for x > x” is therefore

E(,\', K) — {e“//f(x—,\") + (ev[ﬂ(,\ﬂ\-') + e*j/fl.\f\') ) Z(FC)_jz/}d )/n

135

et S ey 2, 16
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The first term in the brackets represents the wave propagating directly from the source
plane x=x" to the receiver plane. The second term represents waves that undergo an odd
number of reflections in the tunnel walls, initially propagating upward from the source
and downward towards the observation point, or downward from the source and upward
to the observation point. The last term represents waves that propagate downward from
the source and, upward to observation point, and upward thus experience an even number

of reflection in the wall. The power series may be summed in closed form to give

5

e_iﬂ“._'\/) i 2COS ﬁ(.\' + _\',)FC)_]-/H + rze*/-‘ﬁ/(l/ﬂ(,\—r\’l (U/,l J (,) 17)
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E (_\‘, K) =
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Eigenvalues of the Propagation Modes in a 2-D Tunnel

Using the Fourier representation (2-8), we can express the fields radiated by a

vertical polarized antenna into a straight 2-D tunnel as

1 = [e P £ 2c0s Blx+ x)Te /2 4 2 /4 oiB) ¢ .
'B( ) A Jo e Ndx

Eoe)=g- )L -[le 1A 28

(2-18)
The modes are from the pole singularities of the (2-18) and are the solutions of the

fransverse resonance equation.
o
[2 = J4bd (2-19)

For TE mode (Vertical Polarization), the reflection coefficient is

op_ou |
TE _ an B _ B_Bn'
U o on BB, 220
B, B

5 , » . . [ 2o
where 8 =4/k,” — Kk is the transverse wavenumber in air region and 5, =+/€ k,” — Kk~

is the transverse wave..amber in dielectric wall region.

Because the fields in the tunnel are the sum of inhomogeneous plane waves the

experienced small attenuation along z, B and B, will be nearly real and T'"* will be

close to —1. In this case the solutions for £ of the transverse resonance equation (2-20)
. niw
will be close to —2—2 forn=1,2,3, ..... .

In the view of the foregoing discussion, let

niw
B="7- (2-21)




Substituting (2-21) into the left handside of (2-19), the transverse resonance equation

becomes
FZ — e—j4([8 (2_22)
Since I' is near -1 for the low attenuation modes, taking the square root of (2-22) gives

[7E = —o7 120 < _(1- j245) (2-23)

Now consider the Taylor expansion of ' about §=0. Since

B.= \/(5“, - l)ko2 + 87, the first two terms in the expansion are

TE _ TE( ¢ 2(,5"&‘-) "
' =1""(5§=0)+ 5—_[3“_(,8 e (2-24)

In (2-24), B = % and B, = \/(5“_ ~ 1k, +(%j . Equating (2-23) and (2-24), we may

solve for & and obtain the modal solutions.

s - LI (E=0) _ B+ B, _ pp.
' {.1_ } {.1_ B-B, } B.—B+jdp (B+B.)
2 jd — 2l jd ——————
ﬂl\' ﬁ + n ) B\\’ (ﬁ + ﬁ\f )

In the denominator of (2-25), f,.d >>1 so we may further approximate the solution as

5 B _ 1 _ ! (2-26)

" d(B+p,) p. dk, )
Jé J([[lﬁ'?] jd l+\/l+(€n _1{2”\0J

ni




For the lower modes 2dk, >> nr , and hence

nw
5 = Adko nA (2_27)

" jde -1 jadJe -1

Substituting (2-27) into (2-22) gives the poles of the integrand in (2-18)

nru nA
b=+ 77— (2-28)

2d " 4d7 e, -1
The wavenumber along z for the n” mode is then given by
Kll = I\Ow - ﬁn: (2‘29)
Since the imaginary part £, is small, k, may be apprcximated

2
noTA (2-30)

AN 1
K, =ko> =] 2= | =
Y (261] ! 2 (m 2 4d°fe, -1
=
2

From (2-30) it is seen that since d >> A, the attenuation constant is approximately

A . . nm 2w
rER Assuming that d >> A, for the lower modes having — << ==, K

2d A"

proportional

can be further approximated as

K, =k - (nm)” (2-30A)

0
! 2d%ky e, —1

where €. is now taken to be the real part of the dielectric constant of the wall.



23 Modal Fields for TE Polarization in a 2-D Tunnel

The modal representation for the field in a 2-D tunnel is obtained by deforming

the contour of integration in (2-18) so as to capture the poles representing the waveguide

modes. To do so, it is convenient to change the variable of the integration (2-18) from x

to 3. Since k =+/k,> — B , differentiation of both sides, gives

Thus the integration of (2-18) becomes

E (02 =20y [T Flxx. BYp
] 472- —o0

where

—iB(xv-x" -2 2 o~ vy’ A 'n:"?:
Cou, e 4 2c0s Bx+ 3 e 4 PR M L) b

F(ﬂ)"ﬁ 0 |_ e *H /\'3—,33

0

The integration path in the complex £ planc lics around branch cut

(2-31)

K= 1//\'02 — B* , as shown in Figure 2-2. The branch points are at f =tk , the poles are

A
located at =0 and B:i'_n_+ ; n

J—=—=——=forthe TE polarization.
2d 4d-\je,. —1




ly
v

Figure 2-2 Integration Path in complex £ plane

By Cauchy’s residue theorem, the contour around the branch cut may be deformed into

the real /3 axis by summing the residues of the poles crossed in the deformation. If C,,
and C,, are two segments of the contour for R — oo, it is easily shown that the

integration over C,, and Cp, vanish. Thus

| F(B)ap = 2njBZres{F(B)}—ff;F(B)dB (2-34)

11



Since F(f) is odd function,

f; F(B)B =0 (2-35)

Because the only contribution in (2-34) comes from the residues in S plane.

We have
o . . / 2-j./k‘,3—[3,‘f: / kB
E,\' (X, )= —-—:}l& JO 2 S]TI(B”.\')S]H(B”.\' )(—:——T + 2 COS(B”.\')COS(B”.\' >C_~T—_,,—
2d n=even ko‘ — B”" n=odd kO- _ B”-
(2-36) |




24 Modal Fields for TM Polarization in a 2-D Tunnel

By the principle of duality, we can find the magnetic modal fields in 2-D tunnel
for excitation by a magnetic line source. The solution is found from (2-36) by replacing

U, by g,. Thus

Hy(v2) =S Mol 3 sinB,x)sin(B,x) "=+ 3 cos(B,x)cos(B, )"

2d n=even k02 — B”?‘ n=odd ko" - B”‘

However the wavenumvers £ must be found accounting for the TM reflection

coefficient given by

B B
FTM —_ (")SOSW 0‘)808\1’ — EWB - BW (9_38)
BW + B EWB + Bw

WE€QE,, WSHE,,

The first two terms of the Taylor series expansion of I'™ about § =0 give

™ = P (§ = 0) 4 § 2 7 - ﬁ) (2-39)

Making the same approximations that lead to the expression (2-28) for £, in the case of

TE polarization, we find that

nrw ne A

n = J—
2d Ad- /e —1

W

B (2-40)

13



2.5 Mode Attenuation in 2-D Tunnels

Many propagating modes exist in tunnel when the operating frequency is high.
Because each mode has different attenuation constant, only lower modes are important

for long tunnels. The attenuation constant for a TE mode is defined by

o (dB/m)= 20]0g(elm('<”)) (2-41)

2 2 2
20Im(x,) _ 20 [ a* (2| 10 (2-42)

10~ In10| 2/e, —1{ w lnlo\/'g“____lY

alt (@B/m)=

where the parameter ¥ is defined by

From equation (2-42), we observe that the mode attenuation is dependent on the factor

and the square of mode index number. That means that the lower modes are

(24
dominant far from the transmitter, and that narrow tunnels have higher attenuation than
wide tunnels for given operating frequency. Similarly, we can define the TM mode

attenuation constant as

2
10 €,.n~

m\lgw—ly

o™ (dB)= (2-44)

In figure 2-3 we have plotted the attenuation constant for the dominant n=1 mode

versus tunnel dimension and wavelength assuming €,. =6 . For example, a 450 MHz
radio wave propagating in a 4 m wide tunnel has y =0.0069, so that the attenuation of

dominant TE mode is 1.349 dB per 100 m. For the n=2 mode, the attenuation constant is

14




5.395 dB per 100 m, while for n=3, 4 the attenuation constant is 12.139 dB, 21.58 dB per
100 m, respectively. Hence only a few lowest modes contribute the received power far

from the transmitter.

Attenuation/100m vs Lambda®/Width® , Mode=1

10

10°

10°

Attenuation per 100 meter (dB)

10" ks o

Vertical Pol. [
— Horizontal Pol. |

N

102 - = i
10 10 10 10
Lambda®/Width®

Figure 2-3 Attenuation constant versus tunnel dimension and frequency

2
through the parameter

(2a)
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Attenuation per 100 meter (dB)

Attenuation/100m vs Mode for 450MHz, 4m Wide Tunnel
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_~ -
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10° 5
10 10
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Figure 2-4 Attenuation constant versus mode number
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2.6 Fields in a 2-D Tunnel for Point Source Excitation

Figure 2-5 Point Source radiation in y-z plane

We have previously derived the modal expressions of the fields excited by a line
source. We need to modify the expressions for excitation by a small dipole (point source).

To do this, we first consider the dipole to be constructed from a spectrum of phased line
Ipch . -
sources of strength E with wavenumber k, , as suggested in Figure 2-5. Thus the y
s

variation of the dipole is

I oo —jk,
Ith()’):Ioh;;f_we Yk, (2-45)

Now suppose that the modal fields E for the phased line source of unit

amplitude is written in the form

E,(x.7.2)= Y A, (xf /" e/ (2-46)

n

17




. . - 2 2 . .
where A, is the amplitude modal fields, x,, = 4/k,” =k~ and k,, is wavenumber of

mode in y-z plane. Then from (2-45) and (2-46), the electric field due to the point source
is

1011

E,(x,2) j 2 AE, (e IS (2-47)

When y is small component to z, primary contribution to the integral (2-47) comes from

the vicinity of k£, = 0. In this case we can approximate x, as

=k, —— (2-48)

Using (2-48), the integration in (2-47) is approximated as

k)’

E,(x,,2) zllj ZA”E I (2-49)

.\'

At large distance down a tunnel, the height y of the observation point will be

about to the same as that of source, so that we may set dipole y = 0 in (2-47) to obtain

_kl
By (x,2)= % A B, (4 [ e 2 ak (2-50)
n

~2_

The integration of (2-50), can be evaluated explicitly as

k,?
aad "1. : .2 Y tad hd '2 {
I_wej"k“ dk, = / k”j e du :JJ—/‘”«/; (2-51)
z Z

18




Hence we have the modal field from the point source at y =0,

Iy

e, i~ .
E,(xz)= ”\/IE_&%‘?]“ Y AE, (x} /" (2-52)
n

For the TE polarization, the modal fields sum is given by

—-JK,z -JK,z

$ AE, (% = 2RO 3 Gin(@, x)sin(B, <)+ 3 cos(B,x)cos(B, )

2d n=even K, n=odd n

(2-53)

With the help of (2-52) and (2-53), the electric field at the receiver point due to a dipole

1S

E i 1 —j}("; —jK“:
RO TR L B A0 Chag N g N

V27z 2d n=even Ky n=odd K,
(2-54)

where K, = ko —B,* and B, =2—Z+j—2—11}——— for TE mode
4d?Je. 1

For convenience in evaluating the communication channel, it is desirable to
express the results in terms of path loss between isotropic antennas, or its reciprocal
called the path gain. In order to make this interpretation, recognize that the power

radiation by the Hertzian dipole is

2 2
o) 2

i9




where 1 =1207 is the impedance of free space. The effective power radiated by the

dipole in z direction Pppp = G, P where the antenna gain G for a Hertzian dipole

=% . Thus the equivalent amplitude of the dipole is

n’ 2 _ Prrp
40k—2(10-h) = ERE, (2-56)
d

Using (2-55) and (2-56) the dipole current amplitude equivalent to radiation of Pppp

watts by an isotropic source is
Prpp
Iy h :(&) —LRP (2-57)

If the effective radiated power is Pggp =1 Watt, then

A 1
In-h=|—|]— 2-58
0" (n) 60 ( )

The modal fields for Pggrp =1 Watt Hertzian dipole is therefore given by

E ( ]E o) A 2 sin(B )sm(B \/)e—jKu: . 2 Cog(ﬁ \)LOS(B \/)()—j‘(,,:
AL =—¢ " ———— T X ) s(B v)e v
’ 1207z 27d n=even n n K, Moy n n K,

(2-59)

where f#, = —+ j————=—=—==for Vertical Polarization.

The power received by a point source can be expressed in terms of the field at the

receiver via




A2 'E(x,z>]2
Pry = Gpx | o (2-60)

For an isotropic receiver, Gpy =1, substituting (2-59) into (2-60) gives the received
power for Pgpp=1 Watt, which is equivalent to the Path Gain for the radio link (path gain

is the inverse of the path loss).

In Figure 2-6 and 2-7, we have plotted the path gain as a function of distance
between isotropic antennas for propagation of a 4 m wide 2-D tunnel at frequency
ranging from 30 MHz to 1.8 GHz. The dielectric constant of side walls is taken to be

€, =6 and the condu-tivity 6 =0.01. The Path Gain is averaged over the width of the

tunnel and normalized to the received power at 10 m from the transmitter. At small

separation, the path gain is nearly that of free space, which for isotropic antenna as at 10

2
n: separation is (Z—g&) . In Figure 2-6, the antenna polarization is vertical and
transmitter is located at the mouth of tunnel and 2 m from the tunnel side wall. Because
of the narrow width of the tunnel, at 100 MHz and below the signal decreases rapidly
with distance. The path gain for horizontal polarization of the antenna is shown in Figure
2-7. Because the attenuation constant of the TM (Horizontal Polarization) modes is
greater than for TE (Vertical Polarization) modes for given tunnel width, we see that the

signal decreases more rapidly for horizontal polarization than for vertical polarization.

21




Normalized Path Gain of 2-D 4m wide Tunnel for Vertical Pol.

O; r : T T T T T T T
— X
g '40_ o) Xx 1
£ X
= | J
8 50 X
< ° x
0“3 '60_ xx |
. x ——  1800MHz
ol S — 900MHz | ]|
3 —— 450MHz
-80F 1 © g N I
y e} O 50MHz
ool x 30MHz 7
(o] xx
-100 | . l)(x 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Distance (m)

Figure 2-6 Normalized Path Gain of the 4m wide 2-D Tunnel for various frequencies

Vertical Polarization (&,=6, 0 =0.01)
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Normalized Path Gain of 2-D 4m wide Tunnel for Horizontal Pol.
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Figure 2-7 Normalized Path Gain of the 4m wide 2-D Tunnel for various frequencies
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3. Mode Coupling at L, T, and Cross Junctions

3.1 Mode diffraction analysis of coupling

..... P > pz

A
Ly

Figure 3-1 Propagation in 2-D Cross Junction Tunnel

In order to illustrate the approach used here to couple into side tunnels, consider a
source located in one arm of a cross junction of a 2-D tunnel, as shown in Figure 3-1.
Since kyd >>1, the modes excited by the source in the left arm will propagate to the gap
and couple with little attenuation into right arm. They will also couple into the upper and
lower arms as a result of the illumination in the aperture of the arms. As a first
approximation, the illumination in the aperture is given by
PATEE cos(k, z)+ jsin(k,z). For the lower modes in the left arm, K, is close to kg,
and hence is much larger than the transverse wavenumber f3,, of those modes. As seen in

the cross arms, the wave number x,, in the aperture corresponds to the transverse

wavenumber 3, in the cross arm. Thus, the aperture fields excite only the very high

1

order modes in the lower and upper arms that have transverse wavenumber 3, close to




kg . Since these modes have very high loss, they cannot contribute to the fields at

significant distances along the upper and lower arms.

In view of the foregoing argument, coupling to low modes must occur through a
different mechanism. Felsen, in studying reflection of modes incident on the open end of
a waveguide, suggested such a mechanism [9]. Viewing the incident modes as composed
of multiply reflected plane waves, the coupling to the reflected modes resulted from
diffraction at the edges of the open end waveguide. Each plane wave excites diffracted
rays that are multiply reflected in the waveguide walls. By summing the diffracted ray
contributions and using the Poisson sum formula, it is possible to translate the diffracted
rays into a modal sum, with the amplitude of the modes given by the diffraction
coefficient evaluated at the mode angle. The diffracting corners and the rays that excite
the cross tunnel are shown in Figure 3-1. This approach is especially will suited to the

case when kyd >>1, as we have found necessary for propagation over a significant

distance in a tunnel. The multiply reflected rays originating at the upper right hand corner
of the upper arm in Figure 3-1 are shown Figure 3-2. In this figure we have reoriented the
coordinate system so that z lies along the axis of the cruss tunnel.

The field received at a distance z along the tunnel is the sum of the fields carried
by the multiply reflected ray produced by diffraction at the corners of the tunnel. The
multiply reflected rays arriving at the receiver may be viewed as coming from multiple
images of the edges in the tunnel walls. The image array for a single line source at the
right hand edge is shown in Figure 3-2. Similarly, the left hand edge gives the diffracted
ray contributions that appear to come from the images shown in Figure 3-3.

Each mode incident on the junction will generate a set of sources of the type
shown in Figure 3-2 and Figure 3-3. The source corresponding to the right hand edge will

have strength u that is determined by the phase and amplitude of the incident modal
field, and a pattern function D(,,,8,, ). Here 0,, is the angle of incident plane wave
comprising the mode incident on the junction, and 0,, is the angle of the diffracted ray.
Similarly, the left hand edge will have amplitude u, and pattern function D(6,,,6,, ). The

n’

explicit expression for ug, u; and D(8,,8,,) will be discussed later. When 1, u; and
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D(®,.8;,) are known, then for TE polarization the field L. at the receiver location (x,z)

is given by
oo e—jk“ru
E.“(X,Z)Z 2 2 “ir(en)pD(en’ein)— (3'1)
i=0,1 n=—00 v,
2 2
r, = \/z” +(x—(4n+1)d) (3-2)
x—(4ntl
0, = tan_l[’\—(”——ﬂ] (3-3)
<

where the + sign is applies the right hand edge (i=0), the — sign is for the left hand edge
(i=1). In (3-1) ~ (3-3), n=0 refers to the direct ray and n = +1,+2 +3 .. refers to rays
coming from the images, as indicated in Figure 3-2 and 3-3. The index p =0 gives the
number of reflections undergone by the ray corresponding to the particular image. The
values of p are listed in Figure 3-2 and 3-3, and expression for p in terms of n will be

given in the subsequent discussion.

In the case of a waveguide with metallic walls, |Fl =1 so that only the sign of

(I')” needs to be accounted for. In the case of dielectric waveguide walls, (r)? is a
function of the number of reflections through the glancing angle 6,,, and through the
exponent p. In order to generalizing Felsen's method to the case of dielectric walls, it is

necessary to consider [p(@,, )]” as a function of ray direction so that the pattern function

of source becomes {I(0, )|” D(O,,0. ). In this way the field from each image accounts
n n mn y o

for the multiple reflection.
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Figure 3-2 Diffracted rays due to the images of the line source at the right hand edge
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Figure 3-3 Diffracted rays due to the images of the line source at the left hand edge
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3-2  Ray-Mode conversion

For propagation over a significant distance along the tunnel, many reflections
must be accounted for in the sum (3-1). A more convenient representation of the field in
this case is found by converting the ray sum into mode sum, as discussed below in terms

of Poisson sum formula [10].

A periodic function f(\) with period 4d can be represented in form

Fx)= 3 f(x+and) (3-4)

Jl=—00

where f(x) is some function defined on the infinite interval. As applied to the

waveguide problem ]7(\) is the y component of electric field inside the waveguide

—d < x <d , and is the analytic continuation of the field for the remainder of the period
4d (—2d < x<—-d and d < x <2d ). The Poisson sum formula expresses this function as

the sum

T
1

Flx)=— 30y’ (3-5)

where C,, is the Fourier transform of f(x) given by

N
—]j——X

Coo =" fx)e 24 dx (3-6)

If the reflection coefficient I =1, then we can interpret f(x) as being the y
component of the electric field due to a line source inside the waveguide, in which case
the term f(x +4nd) represents the field due to one of the images of the line source in the

waveguide walls, as shown in Figure 3-2 for a line source at d, or in Figure 3-3 for a line
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source at —d. When the waveguide walls are not perfectly reflecting, the definition of

f(x+4nd) is modified to include reflection coefficient, as discussed below.

By grouping terms in (3-5) for m = i|m] , the sum (3-5) is expressed in terms of
the waveguide modes. Note that the m = 0 mode in the dielectric waveguide would be
highly attenuated and is ignored here. According to Poisson sum formula, the total ficld

E, (x, z) in the waveguide is given by the modal expression

L &c,+C, mn . &C,-C_,, . [(mm
E_V('\"')— l:z 5 COS§| ’)—d'\ +12———2——sm£—7—1—.\ (3-7)

m=1 = m=l =L

The coefficient C,, is given by the Fourier transform of an equivalent line source field

fx).

3.2.1  Evaluation of C,, for diffraction at the left hand corner

The choice of the equivalent line source field can be understood in terms of
Figure 3-3, where we have shown the original line source at —d and its images at +3d,
+7d, ... and -5d, -9d, ... . The images on the right are indexed by n=1, 2,3, ... and
those on the left by n =-1, -2, -3, ... . Each image represents the ray that is reflected p
times in the waveguide walls, where p = 2n-1 for n>0 and p = -2n for n<0. The individual
terms in the ray sum (3-4), which represent the multiply reflected rays, will have the

values

o~ kit
f(,\‘+4lzd): u,[F(O” )]p D(e,,,e,-,, )C—~——— (3-8)

P

where
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=22 +H{(x+d)-4naf (3-9)

n

and

0, =tan

_{l(x+d)—4ndq (3-10)

Z

Here u, is the amplitude of the field incident on the edge and the diffraction coefficient
D(0,,0,,) gives the pattern function of the line source.

By replacing x+4nd in (3-8) ~ (3-10) by x, it is seen that

—jknr
: e
f(,\') =1 [F(e)]p('\)D(en ’e[n )—_ (3-11)
Jr
where
r= 22+(x+d)2 (3-12)
and
1 [x + a’[
O=tan | —— (3-13)
Z
In (3-11) the exponent of the reflection coefficient is shown by the step curve in
Figure 3-4
In order to carry out the integration (3-6), we write ™) in the form
[F(e)]P(-‘) — o Pl¥)InT(0) (3-14)
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If we now express I' as a function of 6 and assume that z is large so that ,sin Ol << 1 for

the lower values of !n’, then for TE polarization we have

sm@—\/ ,—cos” G 2sin0 (3-15)
sm6+w/8H —cos” 0 S

—_—

We further approximate InT'(0) as

(3-16)

| e
InT(6)= jn+h{1— 2sin 0 } P Ll

€. —1

W

Using the approximation in (3-14) gives

[F(O)]’)("A) = explip(,\‘{ Jm- 2sin© ﬂ = (- l)’)("') exp{ﬂ 2sin6 p(_\‘)} = —sgn(x — 2d)exp{_ 2sin© p(.\')J

€, —1 €, —1 €, —1

(3-17)

p(x) .

» x/d

Figure 3-4 Variation of the reflection coefficient index p(x) for the left hand edge




Note that (3-17) is a generalization of the approach used by Felsen [9] for metallic
waveguides where I' = —1 so that rel) = —sgn(x—2d). Using (3-11) and (3-14) it is

s€en

oo —2si 6 _jko :2+('Y+d)2 —j-"”JE.\‘
C, = —f ulD(B,G,-,,)sgn(x—Zd)exp o0 p(x) ¢ e M dx
e I | 2 2 14
" 2° +(x+d)
(3-18)
: —2sin® . . N
The function exp \/___ p(x) | in (3-18) has discontinuities due to the
g, —1
definition of p(x) at x = +2d, +4d, +6d, ... . However, since 16[ is small for z>>d, at

the discontinuities closest to d, the jump in the exponent will be small. For discontinuities
further from d, the exponential is already small so that it will give small contribution to

the integration. We therefore approximate p(x) in (3-18) by the ramp function

plx)= prd

e

. This approximation is shown by the dasaed lines in the Figure 3-4. The

choice of this ramp function is made to in order to simplify the asymptotic evaluation of

—2sin0
JE, —1
exact and approximate forms of p(x) are plotted in Figure 3-5. In (3-18)
(x+d)

z? +(x+d)2 .

the integration for C,, . The variation of the term exp{ p(.\')} in (3-18) using the

sinf =

Using the foregoing expressions and the approximation form for p(,\‘), we define

the functions

2
g(x) = ko2 +(x+d) + 25 x—j e+ d) (3-19)

2d g fe T2 +(x+d)?

W
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Linear Approximation of reflection constant

0
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. . L : —2sin0
Figure 3-5 Linear approximation of reflection constant exp| ——=—= p(.\')
€, —1

s

for the diffraction of left hand edge, where 6 is given by (3-13),z=100 mandd =2 m

D(0.0,
g(x)= (0.0,,) (3-20)

Then
[y sgnx - 2d)g(x)e 0y (3-21)

m -

To simplify the integration we change variable to 1 = x+d , in which case
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2
7, mm . N
4(n)=ko2* +1* + —-(n-d)- j (3-22)
2d d4E,, —14/22 +1?
D(6,0,,
gn)= ( ,) (3-23)
b2 en2}
and
C, = [ 1y sgn(n—3d)g(n)e Man (3-24)

3.2.1.a Evaluation for m<0

2
For m <0 and for z >> d% , the saddle point of g(n) will lie in the region

1 > 3d . Then the integration can then be written in a form that allows the separate

evaluation of the saddle point and end point contributions. This form is

Cpr = | gl ax — 2 g ()e~1an | (3-25)

—00 —00

For the region of interest z >>d >> A, the saddle point 7, is obtained from the

solution of q'(n) =0. The derivation of q(n) can be approximated by

2
q'(n)= kn mm_ (3-26)

7z 2d sz,/ew—l

and the saddle point is
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:_mk . mm ; (3-27)

n, 2=
4(1 (12/\'02‘\/8“, -1

2
It is seen from (3-27) that for m<0 and z >> (14, the value of Re 1, will be greater than

3d.

Consistent with the foregoing approximation we find that q(ns ), g(n 3.) and

q"(n,) are given by

,
9 7 M mmn. n,”
g(ng) = koyz” +1, +;(7n,,-—7—/j(—[——8‘—1
= - ~ W
mm| mh mn mn
= ko —— +j— |- (3-28)

—+ ] z
2d | 4d T @%kg e, -1 2

D(® ’ein D em’ein
g(ns>: ( s ) - ( )

= 3-29
{22 H]z% Jz (29
where
2l g o lmlA
0,, = tan '(l——;—l] = tan 1{1—41—1] (3-30)
and
Y k
q"(n,)= =" (3-31)

The saddle point integration i 1] for C,, with m<0 is obtained as
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[ g(e an =~ | o(n )e a0
Jjq"n,)
e —_—
27 ¢ adl 4d dzknz el <
= -jk—D(em’ein )e e 2
0
~e * \/XD<em vein )e_JK"‘:e 2 (3_32)

Note that the coefficient of z in the exponent is the same as the value of x,, given by (2-

30A) for the mode solution in a straight tunnel under the condition that d >> A .

The end point contribution to C,, is written in the form
3d y
Lot = [ g(n)e ™" Wan (3-33)

2
If z>> d% , then the saddle point will be far from the end point and we can evaluate (3-

33) asymptotically by approximating the exponent of integrand in (3-33) near the

endpoint as

g(n) = q(3d)+(n-3d)g'(3d) (3-34)
With the help of (3-34), the end point integration becomes

1, ~ g(3d)e74634) ﬁi ¢~ Jn=3d)d (n) gy (3-35)
Letting T = j(n—3d)g’(n), we have

g(3d) ~jg(3d) {0 =t gp — g(34) —jq(3d) -
jq'Ga) e jq'Bd) -
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where

q(3d) = kyz +mmn (3-37)
, mm
3d)=— 3-38
¢'(3d)=— (3-38)
_1 3d
D(tan 1—:,9,,,) (0.6, )
g(3d)= - Spuh bl (3-39)

I

2 21
(Z“ +9d~ )4
Thus the end point integration in C,,, is obtained as

ZdD(O, 0., ) o~k tmm)

3 Yomia) g
gMm)e /1M dn = (3-40)
J._°° ( ) jnm'\/;
With the results of (3-32) and (3-40), C,, for m <0 becomes
e M
-j= J©= - m 4dD(0,6, ) _ -
Cop = murle 4NAD(0,,,0, )" 2 e or - (1 22000) - B4

JmTA T

2
For z >> ‘14, then d\/f << A and the second term in (3-41) coming from the end

point integration is small compared to the first term due to the saddle point. We therefore

omit the end point term from later analysis.
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3.2.1.b  Evaluation for m>0

For m > 0 the saddle point lies in the region 1 <3d , and we may write

Cp = m{[” gm0V 27 g(n)e ™ (3-42)

The evaluation of saddle point contribution is like that for m<0, and leads to
expression (3-32). Using approximation employed to evaluated (3-33), the end point

contribution in (3-42) is the negative of (3-40), or

= _jll(n)l ~ ?‘dD(O’ein> = j(kyz=mm) 343
IMg(n)e " - jmn\/z ¢ ( )

Thus the integration C,, for m>0is given by

m

N

T
=Ujie " \/XD(Q,” .0,, )ej 2 e"jK,,.3 + (__ 1)”1 4dD(O’9in>

jnm\E

C A (3-44)

m
The second term in (3-44), which cam~ from the end point integration, is small compared

2 ‘ , .
to the first term proviced z >> d%. As in the case of m<0, we neglect this term in later

analysis.
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32.1c Total field due to diffraction at the left hand edge

From the result of (3-41) and (3-44), and neglecting the second term, the
2
diffracted modal electric field for z >> d% due to the 11| incident field to the left edge

in the tunnel 1s obtained as

T m=1 .
EA\‘ (X’ Z) = "16/4 —[)i{ 2 (_ 1) 12 D(enl ’ein )COS(M'\.]()_ﬂ\’”M

< m=odd 2d

- —l)%D e" ’ein sin M.\' e_jK'”:
I 2d

(3-45)
m=even =
where K, is given by (2-30A). Expression (3-45) is in the form of a modal sum, as in

(2-206), except that the transverse wavenumber f3,, is replaced by ”m,)d . However, since

the imaginary part of the transverse wavenumber in (2-26) is very small for ¢ >> A, the

transverse variation in (3-45) is nearly that of the modal field.
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3.2.2  Evaluation of C,, for diffraction at the right hand corner

For the diffracted field due to the right hand edge shown in Figure 3-2, the field

expression in tunnel is expressed as

_jko'.

f(x)=uoC@)" D(o,.0,,)—— (3-46)
Jr

Here uq is the amplitude of the incident field at the right hand edge,

r=qz° +(x—a’)2 (3-47)

and

f =4
O=tan | —— (3-48)
F4

The exponent of reflection coefficient p(x) in (3-46) is shown in Figure 3-6.

Using the same approximation (3-17) for I", the reflection coefficient in (3-46) becomes

[0(0))7") = sen(x + 2d)exp{_§ Si‘i? p(x)} (3-49)

With (3-46) and (3-49), C,, is given by

.7 3

[e e} _2 I j_'\'
sin© e 2 dx (3-50)

C,= f_w iy sgn(x +2d)D(6,8,, )exp{

€

W
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p(x)

> x/d

Figure 3-6 Variation of the reflection coefficient index p(x) for right hand edge

As before, we approximate p(.\') in the exponent of (3-49) by the ramp function

x—d|

p(x) =5 shown in Figure 3-6 to simplify the asymptotic integration. The integration

for C,, is evaluated by same approaches as we showed for the diffraction of the left hand

edge. Thus C,, for m>0 is obtained as

JHTU

T
C,, =-lugyse J*‘\/XD(G,”,O,-” Je T3 ik +(—1)'"%)c_jk“: (3-51)
jmTt\/-:_,
And C,, for m<0 is given by
T .mm
C,, =upie jh/XD(e,,,,e,.,, Je g ¢ IR —(=1)" 4([D(O‘Gi”)ca—jk": (3-52)

jmn«/;,




2
As before, for z >> ‘14 we may neglect the second term in (3-51) and (3-52).

From the result of (3-51) and (3-52), the diffracted modal electric field due to the

diffraction at the right hand edge in the tunnel is expressed as

m=odd

- Y- 1)% D(®,,.0;, )sin(’;L;I x)e‘/"mf- }

n=even

I
iz Ak m-l T .
E,V (x’ Z) =Upe 4 E{ Z (_ 1) 2 D(em » ein )COS(%,\']e JKuz

(3-53)
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3.3 Mode Diffraction in 2-D Cross Tunnels

(Dn}

Uyn

It

¢nl

Figure 3-7 Mode Diffraction in 2-D Cross-Tunnels

For a 2-D cross tunnels we suppose that the n"” mode is incident from the left in
the primary waveguide. The modal fields excited in the cross arms are then generated by
diffraction at the four corner edges (C1,C2,C3 and C4), as indicated in Figure 3-7 for the
fields in the lower arm. Let E| (,\‘.z)(-,f2 = Eyir1 + Ey4ipo be the field in the lower cross
arm due to diffraction at the left hand corners C1 and C2. These contribution fo the total

field were derived in the previous section. Assuming both the main tunnel and cross arm

to have width 2d, this contribution to the field is given by the modal sum
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jgﬁ{

m-1 oL m ) i -
E 2(_ I)T D(q)ml ’ dr)nl )COS(B",X)e_jK"” - 2(_ 1) 2 D((Dml > q)nl )Sm(Bmx)e T }

m=odd m=even

) i m—1 . m .
+ unle—]2dK"ej4 i}—\;{ 2 (_ 1)T D(q)m?. ’ (DHZ )COS(BI)IX)e.—ij: - z (_ 1)? D(¢m2 > q)nQ )Sin(Bm'\')e—jK"’: }

2
2d m=odd m=even

(3-54)

Here 1, is the amplitude of the field incident on corner C1, while the field incident on

the corner C2 differs by the phase factor eI

In addition to the diffraction at the right hand corners, diffraction at the upper

corners generate E <X'Z)C3,C4 = Eyip3 + Egip 4, Which is given by

E,(x, 2erca =

b
= AA m=1 o
- “117e 4 £ Z(— 1) 2 D(¢nx4’¢”4)COS(BmX)€ jK”'(”+2d)

B 2d m=odd

n ' )
- 2(—I)ED((D”M’(DIM)Sin(Bmx)e“ij(N+2d)}
m=even
Tt
-Jj2a I AlA E o
jads,, 4-2—\/;:—{ 2(—1) 2 D(¢:;z3,¢n3)COS(B,,,x)e Jjx, (z+2d)

m=odd

(3-55)

)

B Z (_ 1)%, D(q)m:') s q)nS )Sin(Bm-’C)e_jK"‘(:+2([) }

m=even

The term u,,, is the amplitude of the field incident on corner C3, while the field

incident on the corner C4 is u,,ze_jzd'(" . The various diffraction angle in (3-54), (3-55)

!

are as shown in Figure 3-7. Also, the fields u,, and u,, represent E," of the n™ mode

at the lower and upper walls of the main tunnel. For line source excitation, they are given

by
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e—jK” I

sin(B,, (+ d))sin(B,, ") ”

Evn (,\' —4d 7= L) __ Ol jo - n=even (3-56)
‘ 2d i oIl

cos(B, (+ d))cos(B, x')-

L n=odd

where L is the distance from the transmitter to the corner. The total modal field in the

cross arm is then given by a summation over the incident modes in the main tunnel, or

(=]

E,\-dif (x,z); Z(Ey (‘\"Z)Cl,(fz + E_\‘ (-‘35)(‘3.(74) (3-57)

n=l|

To find the field in 2-D cross tunnels due to point source in the main tunnel
requires the inclusion of the field spreading of the plane of the cross section. For the

lower modes having «,, close to kg, the spreading is account for by multiplying (3-56)

ko

. In order to study the effect of the diffraction into the cross
2n(z+ L)

LT
Jr
by the factor ¢ 4

arm on the received signal, we have compared the received power as a function of
distance along a straight tunnel to the received power as a function of distance along a
cross arm located L = 500 m from the source. Because of the various phase terms in the
sums, the fields show considerable local variation over a wavelength scale. Some of this
variation can be removed by averaging the received power over the cross section of the
tunnel. Figure 3-8 shows the average received power as a function of distance for
vertically polarized antennas operating at 900 MHz. Both tunnels are 4 m wide and the
walls have dielectric constant €, = 6 and conductance ¢ =0.01. The 1 watt transmitter is
located in middle of the tunnel (2 m from the tunnel wall). The UTD diffraction
coefficients proposed by Luebbers [12] have been used for the calculation. We found that
the coupling loss of cross-junction tunnel is about 37 dB for this case. Plots of power

received in the cross tunnel for 300MHz and 100 MHz sources arc shown in Figure 3-9
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and 3-10. For these computations, the corers are located at L=50 m from the transmitter

and coupling loss is found to be 28 and 23 dB, respectively.

Received Power in 4m wide Tunnel for 900MHz, Vertical Polarization
"40 T T I T

* * : Straight Tunnel
50k O O :Cross Tunnel ||

Received Power (dB)

-100
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Figure 3-8 Received Power in 4 m wide 2-D Straight and Cross-junction Tunnels
900 MHz, Vertical Polarization, €, = 6,6 =0.01

The corner of cross-junction Tunnel is located at 500 m.
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Received Power in 4m wide Tunnel for 300MHz, Vertical Polarization
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Figure 3-9 Received Power in 4 m wide 2-D Straight and Cross-junction Tunnels
300MHz, Vertical Polarization, €, = 6,6 = 0.01

The corner of cross-junction Tunnel is located at 50 m.
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Received Power in 4m wide Tunnel for 100MHz, Vertical Polarization
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Figure 3-10 Received Power in 4 m wide 2-D Straight and Cross-junction Tunnels

100 MHz, Vertical Polarization,€,, = 6,6 =0.01

The corner of cross-junction Tunnel is located at 50 m.
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34 Mode Diffraction in 2-D T-Tunnels
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Figure 3-11 Mode Diffraction in 2-D T-junction Tunnels

When a modal field is incident on a T junction, as shown in Figure 3-11 it
illuminates the two corners directly, and indirectly via reflection at the further wall. For
d >> A the reflected field will be essentially the same as that of two incident mode,

except for a reflection coefficient I". Because the mode angle ¢, are small, I' will be
close to the value for a plane wave at normal incidence. Let E\,‘”f1 (x, ") represent the

modal field in the lower arm of the junction due to the n'" mode incident directly from
the horizontal tunnel in Figure 3-11 into the upper and lower corners. This sum is given

by
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E ,difl(x,z):

3y
jg \/x { m~1

2 (_ 1) 2 D(q)ml ’ q),,] )COS(B,,,X)emjK”':

m=odd

U, e
" 2d

- 2 (* 1)"’;1 D(¢ml ’q)nl )Sin(Bmx)e_ij: }

m=even

jE \/}—\' { m=1

(3-58)

T Hme o Z (— I)T D(q)mZ » (Dn2 )COS(BI;I‘Y)e_jK"‘(:+2d)
2d m=odd

h 2 (— l)i-jZl D(q)m?.’ q)nl )Sin(Bmx)(’_jK'"(H'zd)}

m=even

Similarly, let E".dif2 (\ :) represent the modal field resulting from diffraction at

the corners resulting from the incident mode field that is reflected from the wall. This

sum is given by

E ,dlfz(x, Z) =

y
s

-, 5 A o o e
u”lre j4(lKue 45?{ 2(— l) 2 D(q)llll ,(1)”1 )Cos(B’”x)e JK,.Z

m=odd
m

- 2(* 1)? D((I)'”lr’q)”lr)Sin(Bmx)e_jK,,,Z }

m=even

(3-59)

; 2 m=1 .
R
(

m=odd

m=even

- Z (_ 1)% D(¢m2r > q)an )Sin(Bm/\'>€~j}<'"(:+2‘1)}

In (3-59), I' is taken to be the plane wave reflection coefficient for normal incidence.
The incident fields u,; and u,, are given by (3-56).

The total field in the lower arm is then given by

B, (n2)= S, (02)+ B, x2) e

y
n=l
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Computation have been made for the received power averaged over the cross
section in the main tunnel and in the side tunnels for a T junction. The tunnels are 4 m
wide and the walls have dielectric constant €, = 6 and conductance ¢ = 0.01. Figure 3-
12 shows received power in straight tunnel, and in the arm of a T junction for a vertically
polarized, 900MHz transmitter located in the middle of the main tunnel (2m from the
each wall) and 500m from the T junction. The coupling loss into the T junction tunnel is
about 42 dB for this case. The received power for 300 MHz and 100 MHz sources are
shown in Figure 3-13 and 3-14 when the sources are located at 50m from T junction. The

coupling loss for theses two frequencies is about 31 and 29 dB, respectively.
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Received Power in 4m wide Tunnel for 900MHz, Vertical Polarization
'40 I | I |
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Figure 3-12 Received Power in 4 m wide 2-D Straight and T-Junction Tunnels

900MHz, Vertical Polarization ,¢,, = 6,6 =0.01

The comer of T-Junction Tunnel is located at 500 m.
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Received Power in 4m wide Tunne! for 300MHz, Vertical Polarization
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Figure 3-13 Received Power in 4 m wide 2-D Straight and T-Junction Tunnels

300MHz, Vertical Polarization ,€,. = 6,06 =0.01

The corner of T-Junction Tunnel 1s located at 50 m.
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Received Power in 4m wide Tunnel for 100MHz, Vertical Polarization
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Figure 3-14 Received Power in 4 m wide 2-D Straight and T-Junction Tunnels

100MHz, Vertical Polarization ,¢,, = 6,6 =0.01

The corner of T-Junction Tunnel is located at 50 m.
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3.5 Mode Propagation in 2-D L-Tunnels

-j4K, d
E([lff ["e

w; Ce[ /0

mn

Ly

Figure 3-15 Mode Diffraction in L-bend Tunnels

When turning the corner in an L shaped tunnel, the diffraction takes place at the
single corner shown in Figure 3-15. However, reflection in the opposite wall produces

additional contributions to the modal fields. One contribution to the modal field in the
arm of the tunnel is directly diffracted field E.\,‘l’-fl (x,z) that is diffracted through the

angle ¢,,, and caused by the field incident at the mode angle ¢, . A second field
E_\,d[f2 (x,z) results from the reflection of the incident mode at the wall, seen on the right
in Figure 3-15. The incident angle for this field is 0,," =0, + n7 , while the angle of the

diffracted ray is ¢,,” in Figure 3-12. The third field £,“/(x,z) from the reflection of a
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diffracted ray at the top wall in Figure 3-15. In this case the diffraction angle is ¢,,"" .

This third contribution is generated by both the incident modal field, and by the modal
field reflected in the right hand wall in Figure 3-15. However, because of the reduction in
strength due to the reflection coefficient for near normal incidence, we include only the

contribution from the incident normal field. The modal field in the tunnel arm is

E % (x,7)= i[E),dif (o) + B, (v 2)+ E, Y (v, z)] (3-61)

v
n=|

The modal diffracted field from the single corner E'\,d"f] (x,z) is expressed as

E 4y 2) =

L m-1 . m .
nej ! _,)'\/’7}‘ 2 (_ I)T D((Dm s q)n )COS(Bm x)e—ij: - Z (_ 1)E D(¢m ’ q)n )Sin(Bm ’\f)e”jKW:

= m=odd m=even

(3-62)

where the incident modal fields u,, at the corner is given by (3-56).

The fields E'\,difz(x,z), E ,‘“ﬂ(,\',z) are of the same form as to (3-62), but are

V

1—-4/¢,.

for the wall with dielectric

multiplied by the normal reflection coefficient I" =
1+4/¢g,,

constant €,,, have a different diffraction coefficient, and phase factor due to the

W

additional propagation distance in the vicinity of the corner. Thus

E.\’dlfz (v2)=

n
. Jj= /)\' m-1 . _
iy e j4K”de + —,)_{ Z(_ l) 2 D( mrvq)nr )COS(B”,.’C)E T (3 63)
2d m=odd
m

- Y (=17 D(@,,, "0, )sir*.(Bm,\‘)e'jK"': }

m=even

and
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E (1:,'/'3({ _):
v X, 2
. L N m—1 -
unl—‘e‘ﬁ“(mdej‘1 _{ 2(‘— l) 2 D(¢;ilrr~¢/1 )COS(BM'\')C)_JM:

A
2d m=odd
rr

- Z(—l)?D(q)m ~¢,,)Sin(ﬁ,”,\')e_j"'m:}

m=even

(3-64)

The received powers in an averaged over the cross section for vertically polarized
sources in a straight tunnel and in an L-Bend tunnel are shown in Figure 3-16 ~ 18. The

width of both tunnels is 4 m and the walls have the dielectric constant €, =6 and

conductance ¢ =0.01. Figure 3-16 shows the results for a 900MHz source located 500 m
from the L bend, and centered in tunnel. The UTD diffraction coefficients [12] are used
fur this simulation. The coupling loss of the 4 m wide L-Bend tunnel is about 50 dB for
this case. Figure 3-17 and 3-18 show the received power for 300 MHz and 100 MHz
sources located at 50 m from L bend. The turning loss for these two frequencies is about

35 dB, and 30 dB respectively.
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Received Power (dB)

Received Power in 4m wide Tunnel for 100MHz, Vertical Polarization
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Figure 3-16 Received Power in 4 m wide 2-D Straight and L bend Tunnel
900 MHz, Vertical Polarization ,g, = 6,6 = 0.01

The comner of L-Bend Tunnel is located at 500 m.
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Received Power (dB)

Received Power in 4m wide Tunnel for 300MHz, Vertical Polarization
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Figure 3-17 Received Power in 4 m wide 2-D Straight and L bend Tunnel
300 MHz, Vertical Polarization ,&, = 6,06 =0.01

The corner of L-Bend Tunnel is located at 50 m.
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Received Power (dB)

Received Power in 4m wide Tunnel for 100MHz, Vertical Polarization
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Figure 3-18 Received Power in 4 m wide 2-D Straight and L. bend Tunnel
100 MHz, Vertical Polarization ,¢, = 6,06 =0.01

The corner of L-Bend Tunnel is located at 50 m.
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4. Propagation in Rectangular 3-D Tunnels
4.1 Fields in a Rectangular 3-D Tunnel for Point Source Excitation

The modal fields in straight 3-D tunnels of rectangular cross section are
approximately the product of the modal variations for 2-D tunncls [2]. For the vertical
polarization of the electric field in a 3-D tunnel, the power loss of side walls is due to TE
attenuation and the power loss of ceiling and floor is due to TM attenuation. Because the
spatial dependence in both transverse x and y direction can be either a cosine or a sine
variation, the modal field in 3-D tunnel have four possible combination of x and y
dependence. These combinations are : 1) sine variation in both x and y; 2) sine variation
in x and cosine in y; 3) cosine variation in x and sine in y; 4) cosine variation both in x
and y. To simplify the field expressions, we place the transmitter at center of the tunnel

(x' =0,y = O), so that only the symmetric modes are excited. For vertical polarization of

the electric field, the symmetric modes have dependence

E, = 2 EAM COS(ﬁmTE,\‘)COS(,B”T” y)e_”""”: (4-1)

m=odd n=odd

For a tunnel of width 24, and height 2d,

TE mT mh
B’ = j (4-2)
" 2d) 44 e, -1
nm ne, A
B, =t (4-3)
" 2dy T 4d) e, -1
2 2 242 2. 492
\/ 2 ATEZ  aTM?2 2 [ mm nm | meA” noe A
K = kO —'Bm _Bn = kO o _,;_ - ',)— =] 3 + 3
2d, 2d, 16d, e, —1 16d,\Je,, —1
(4-4)

The attenuation constant of the modes is dominated by the term 1128“‘, which causes the

attenuation to be like that of a TM polarization in a 2-D tunnel.




The spatial dependence of the current distribution for a point source located at

y =0 can be expressed in terms of the Fourier sum

1] '
1hd(y)=Igh+-22 3 cog =y (4-5)
2 n=even 2d2

The cosine terms in (4-1) can be thought of as resulting from two line sources with phase

N

o by . . . .
variation e 24" . The phased line sources in a 2-D tunnel produces total field having y
nm
PR

dependence cos(
d

j which is close to that of the modal field in (2-53). As a result, the

modal field for vertical polarization in a 3-D tunnel is given by

E, (x,y,z)z[ —lo/ H > oy (—L?—H-Q—]COS(B,”TEX)COS(B”TM y)e—jK"'-": (4-6)

' 4d\dy )| m=odd n=odd| ¥mn

Figure 4-1 shows the received power in 3-D tunnel (4m wide, 3m high) for

vertically polarized 900MHz signal. The received power is averaged over the section at
1.5 m high from the floor and the transmitter is centered and at the mouth of tunnel. The
reference position for normalization is :* 10 m from the source and it is -55dB at
reference point..The free space received power at this point is =51.5 dB. The normalized
path gain for an isotropic point source in a 3-D straight tunnel is shown Figure 4-2. For
this calculation, the dimension of tunnel is assumed to be 2d; =4 mand 2d, =3 m. The

transmitter is oriented vertically at the center of the tunnel width and height. In order to
define the normalized path gain, ‘E\’ is averaged over the width of tunnel at 1.5 m high

from floor. This value is then normalized to the value of the average at z = 10 m. Because
the tunnel height is smaller than its width, and because the attenuation due to reflection of
TM polarized waves at the ceiling and floor dominates over that due to TE reflection at

the walls, the attenuation in the tunnel is greater than either the TE or TM case in a 2-D
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tunnel of width 4 m. As in the case of a 2-D tunnel, lower frequency signals undergo

much higher attenuation.

Receied Power in 4m X 3m 3-D tunnel ( 900MHz, Vertical Polarization )

+ T T T T T T T T T

———  in 3-D tunnel
+ + Freespace
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-100
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Figure 4-1 Received Power in 3-D straight tunnel ( 4m wide, 3m high )

for 900MHz, Vertical Polarization (&_,=6, 0 =0.01)
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Normalized Path Gain of 4m x 3m Tunnel for Vertical Pol.
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Figure 4-2 Normalized Path Gain in 3-D straight tunnel ( 4m wide, 3m high )
for various frequencies

Vertical Polarization (&, =6, 0 =0.01)
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4.2 Attenuation of modal field in 3-D tunnels

The attenuation constant in a 3-D tunnel that is 2d; m wide and 2d, m high is

defined by (4-7) for vertical polarization and (4-8) for horizontal polarization from (4-6).

0 m2r? nle, A
o(dB) = 20logle ™+ )< L T (4-7)
(aB) = lnlO_(zdl)ng,—l (2(12)3,/8,1,—1#
. 10 I mie, A2 n2a ]
odB) = 20|oo(e“““~'-~)): : + (4-8)
(d5)= 20leg 10| (20, e, 1 (e, T

where €, is dielectric constant of tunnel walls. In Figure 4-3, we showed the attenuation

constant per 100 m for dominant mode (m=1,n=1) vs the ratio of tunnel width and height
in 3-D tunnels. The tunnel height is assumed to be 2¢, =4 m high and the operating
frequency is 900 MHz for this plot. The diclectric constant of tunnel walls and both

ceiling and floor is used €,,=6. If the width of tunnel is greater than the height, then the

attenuation of horizontal polarization is lower than vertical polarization. Otherwise, the
vertical polarization gives lower attenuation in 3-D tunnel. By (4-7) and (4-8), the
polarization for low attenuation is determined by comparing the two dimension terms

with dielectric constant.

2

The attenuation of dominant mode (1,1) versus — for 3-D tunnels having square
d-

cross section is shown in Figure 4-4. As we discussed in connection with the attenuation
in 2-D tunnels, the attenuation increases rapidly when the wavelength of given frequency
1s close to the tunnel dimension. Higher modes attenuate even more rapidly. In order to

quantify this, let AL :i- 10
Oy Oy

be the distance at which the next higher mode (2,1)

attenuates by 10 dB more than the dominant (1,1) mode. The variation of AL with the

2

parameter —- in a 3-D tunnel with square cross section is illustrated in Figure 4-5. For
d”
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”

example, in a 4mx4m tunnel and at a frequency of 900MHz, Ls ~1.42x107. From
d

Figure 4-4 it is seen that in just over 100m the (2,1) mode is reduced by 10dB as
compared to the (1,1) mode. At 300MHz, this distance is only about 15m.

Attenuation/100m vs Width/Height in 3-D Tunnels for (1,1) modes

10"

—— Vertical Pol.
~~~~~~~~~~~ Horizontal Pol. |

—_
o
w
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Attenuation per 100 meter (dB)
3 =
d

—
o

10 10° 10
Width/Height

Figure 4-3 Attenuation constant for dominant mode vs the ratio of the width and height

in 3-D tunnels for €, =6 (900MHz, 4m tunnel height)
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Attenuation/100m vs Lambdaz/Length3 in 3-D Tunnels for (1,1) modes
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Figure 4-4 Attenuation constant vs — for dominant mode in 3-D square tunnels
d”

( Dielectric constant €,, =6 )
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Figure 4-5 Distance for 10 dB down of (1,1) and (2,1) mode vs —
d

in 3-D square tunnels ( Dielectric constant €¢,, =6 )
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4.3  Coupling loss at L, T, Cross junctions

The coupling loss at junctions in 3-D tunnels will occur via diffraction at the
corners, as previously discussed for 2-D tunnels. If the height of the main tunnel and side
tunnel are the same, then the modes excited in the cross tunnel will have the same field
variation in the vertical direction as the incident mode. For the lower modes the
diffraction coefficient at the edge will be nearly the same as in the 2-D tunnel were there
is no variation along the edge. Since the coupling is nearly independent of the mode
number in the vertical direction, the coupling loss for 3-D tunnels is the same as for 2-D
tunnels, and is independent of tunnel height.

The coupling loss vs various tunnel width for L-bend, T junction and cross
junction structure for 900MHz vertical polarization is shown in Figure 4-6. The coupling
loss of cross tunnels is about 3 dB lower than T-junction tunnels. The diffracted fields in
cross tunnels have no wall reflection factor for comparing with the T-junction so that the
coupling loss of T-junction tunnels is higher than cross tunnels. (See Figure 3-7 and 3-11)
The coupling loss of L-bend tunnels is about 8 dB higher than T-junction tunnels. We
find the diffracted fields in T-junction have one more upper edge diffraction fields by
comparing with Figure 3-8 and 3-10. The incident angle for upper edge is smaller than
lower edge for given same diffracted angle so that the diffraction cocfficient of upper
edge is larger than lower edge. Therefore the coupling loss of T-junction is smaller than
the L-bend tunnels.

If we take into account only the (1,1) mode in the main and side tunnels, then the

received powers in the cross, T and L junctions at y=0 are respectively

b,\' (’\" Y= 0’ :')Crr)ss =
.
T AA —j2d 2, \ -k, 2d 7\ -k
e (D(.‘l + Dege TN Dy + Dege T TR Jeos|B e
4d,d,

(4-7)
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E,\-‘ (x’ y= 0, Z)'I“—junciion =

N
- K — e Y o e -
U, e 4 4d (DTI + DT4F€ JK]']4({I - D'[‘z + DT3F€ Jkljd{dl} jk]'l‘-dl )COS(BI’IEX% JRs

142
(4-8)
EVV (X, y= 0, Z)L—junc!ion =
n
R L o)
Uy * Z;/%(Du +(Dpa + Dy Jre 40 )COS(BITEx)e A
142

where u;, is given by

uy = E,(x=td,,y=0,z=1) =( ~ Loh M ) JCOS(BITE (td, )){”L*’J} (4-10)

and D; is the UTD diffraction coefficient for (1,1) diffracted mode from (1,1) incident

mode at corner for the width of 2d; and the height of 2d, tunnel.
The coupling loss for (1,1) mode can be defined by the ratio of the fields in main
tunnel and side arm and results from corner diffraction. By (4-7) ~ (4-10) and (1,1) mode

expression of (4-6), the coupling losses for three structures are showed in Figure 4-7.

CZ;ICI‘OSS =
j_ —_— ] 1 ; . IE 4_11
e 4 ﬁ {DCI + DCZe_Jz(['Kl _ (DC3 + Dc4e_j2d|K] %-]KIZ(IX }_JBI dx ( )
1
C[’T—jlmcliou =
n
" — =J — _ ol (4_12
e ;g: {DTI + Dyl 4 _(Drz + Dpsle f"'4dl)e Jszdl}e B, )
I
i AN Lt | i
CLL‘jllHCIiOII =€ 4 {DLI + (DL2 + DL3 )Fe | l}e 4y (4_13)

4d,d,
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where UTD coefficients for coupling losses are listed in Table 4-1.

UTD Coefficient Incident Angle Diffracted Angle
o o
D¢ af A 3n af A
tan —_— — — tan —_—
4(11 2 4([1
cress Pz T +tan”! L tan ! L
Tunnels 2 4d, 4d,
Fi 3.7 Pes tan ™! L I +tan”! —}\—
(Figure 3-7) 4d, 2 | 44,
D( 4 ] I A
—+tan | — nT—tan | —
Z 4(11 4(1]
Dr af A 3n af A
tan | — ——tan | —
4d, 2 4d,
T-junction D o N T, L
Tunnels 4d, 2 4d,
(Fi 3-11 Prs T tan™ L T—tan ! A
tgure 3-11) 2 d 74,
D14 -1 A -1 A
—+tan | — tan | —
Z 4([1 4(11
Pu tan ™! L I tan”! —}—\—
L-bend |4, 2 |4,
Tunnels D,, T A A x
—+tan | —— tan” | ——
2 4(11 4([|
(Figure 3-15)
° DI 3 —1 A I |
tan S —+tan —_—
4(1] 2 45

Table 4-1 Incident and diffracted mode angles for UTD coefficient for coupling of (1,1)

modes 1n the main and cross tunnels




Coupling Loss vs Tunnel width
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Figure 4-6 Coupling Loss vs Tunnel width by modal simulation

for Vertical Polarized 900MHz source
( Dielectric constant of walls =6 )

73




Coupling Loss for Cross Tunne! (Dominant mode)
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Figure 4-7 Coupling Loss vs Tunnel width for Dominant (1,1) modes

for Vertical Polarized 900MHz source

( Dielectric constant of walls =06 )
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Coupling Loss for Cross-junction Tunnel for 100MHz
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Figure 4-8 Coupling Loss vs Tunnel width for Dominant (1,1) modes and Multi-modes

Vertical Polarized 900MHz source ( Dielectric constant of walls =6 )
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4.4 Comparison of coupling losses with measurements

The simulation results of each coupling loss of three junctions are compared with
the measurements by Sakai et. al. [7]. They made three scaled tunnels by Bakelite slabs

sandwiched between two metallic plates (¢, =3.9, €, = 0.38), the width of L-bend, T-

junction and cross tunnels were 6 cm, 8 cm and 5 cm, respectively. Vertically polarized
9.45 GHz source was used, and they measured signal at middle of the other tunnel arm.
To compare with these measurements, the width of the tunnels is fixed as 4 m, and the
operating frequencies of each tunnel are 118 MHz for cross tunnel, 189 MHz for T-
junction, and 141 MHz for L-bend tunnel with same dielectric constant of the walls for
modal simulations. The coupling losses by measurements were 27 dB for cross tunnel, 32
dB for T-junction and more than 28 dB for L-bend tunnel. Using modal simulations, we
have 20 dB for cross tunnel, 33 dB for T-junction and 30 dB for L-bend tunnel.

Other measurements by Emslie et. al. was for corner loss in high-coal mine cross
tunnels (14 feet x 7 feet) [2]. The dielectric constant of the walls was said to be €, =10.
The measured coupling loss of 40 dB, and 42 dB for horizontully polarized fields at 415
MHz and 1 GHz. The modal simulation for these measurement obtained a coupling loss
of 37 dB for 415 MHz and 40 dB for IGHz. The results of these two sets of
measurements indicate the validity of the modal expressions for prediction of coupling

loss at tunnel junctions. The comparison is summarized in Table 4-2.

Modal Analysis Measurements
Cross Tunnel [7] 20 dB 27 dB
T-junction Tunnel [7] 33 dB 32 dB
L-bends Tunnel [7] 30 dB more than 28dB
Cross Tunnel (415MHz) [2] 37dB 40 dB
Cross Tunnel (1GHz) [2] 40 dB 42 dB

Table 4-2 Comparison of coupling loss with measurements [7],[2]

76




4. Conclusion

Radio propagation in long and narrow tunnels can be described using modal
analysis. In over sized tunnels, there exists many modes but only a few lower modes are
dominant for propagating to long distance from the transmitter because the higher

attenuation constant of the higher modes. The attenuation constant in tunnels depends on

242
the mode numbers, tunnel dimensions and frequency through the parameter /2 7/7 ; )3
LU 3

2~2
and ™ %d )3 , where n, m are mode numbers, A is the wavelength and 24|, 2d,
2

e

are tunnel width and height. The attenuation increases with wavelength (decreases with
frequency) and mode number, and decreases with tunnel size. For tunnels that are wider

than they are high (2d;>2d, ), the modes with horizontal electric field have the least

attenuation.

We have evaluated the modal coupling for tunnels with junctions using hybrid
ray-mode conversion. Thz coupling mechanism is explained through mode diffraction at
the corners into the side tunnels. We have found that the coupling loss is 50 dB for L
bend junction, 42 dB for T junction and 37 dB for cross junction in 4m wide for 900
MHz signals that have vertical polarization. These coupling loss increases slightly with

increasing tunnel width.
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